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Abstract Construction of an accurate theory of orbits about a precessing and nutating oblate
planet, in terms of osculating elements defined in a frame associated with the equator of date,
was started in Efroimsky and Goldreich (2004) and Efroimsky (2004, 2005, 2006a, b). Here
we continue this line of research by combining that analytical machinery with numerical
tools. Our model includes three factors: the J2 of the planet, its nonuniform equinoctial pre-
cession described by the Colombo formalism, and the gravitational pull of the Sun. This
semianalytical and seminumerical theory, based on the Lagrange planetary equations for
the Keplerian elements, is then applied to Deimos on very long time scales (up to 1 billion
years). In parallel with the said semianalytical theory for the Keplerian elements defined
in the co-precessing equatorial frame, we have also carried out a completely independent,
purely numerical, integration in a quasi-inertial Cartesian frame. The results agree to within
fractions of a percent, thus demonstrating the applicability of our semianalytical model over
long timescales. Another goal of this work was to make an independent check of whether
the equinoctial-precession variations predicted for a rigid Mars by the Colombo model could

We use the term “precession” in its general meaning, which includes any change of the instantaneous spin
axis. So generally defined precession embraces the entire spectrum of spin-axis variations—from the polar
wander and nutations through the Chandler wobble through the equinoctial precession.
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262 P. Gurfil et al.

have been sufficient to repel its moons away from the equator. An answer to this question, in
combination with our knowledge of the current position of Phobos and Deimos, will help us
to understand whether the Martian obliquity could have undergone the large changes ensuing
from the said model (Ward 1973; Touma and Wisdom 1993, 1994; Laskar and Robutel 1993),
or whether the changes ought to have been less intensive (Bills 2006; Paige et al. 2007). It has
turned out that, for low initial inclinations, the orbit inclination reckoned from the precess-
ing equator of date is subject only to small variations. This is an extension, to non-uniform
equinoctial precession given by the Colombo model, of an old result obtained by Goldreich
(1965) for the case of uniform precession and a low initial inclination. However, near-polar
initial inclinations may exhibit considerable variations for up to ±10 deg in magnitude. This
result is accentuated when the obliquity is large. Nevertheless, the analysis confirms that an
oblate planet can, indeed, afford large variations of the equinoctial precession over hundreds
of millions of years, without repelling its near-equatorial satellites away from the equator of
date: the satellite inclination oscillates but does not show a secular increase. Nor does it show
secular decrease, a fact that is relevant to the discussion of the possibility of high-inclination
capture of Phobos and Deimos.

Keywords Orbital elements · Osculating elements · Mars · Natural satellites ·
Natural satellites’ orbits · Deimos · Equinoctial precession · The Goldreich lock

1 Introduction

1.1 Statement of purpose

The goal of this paper is to explore, by two very different methods, inclination variations of a
solar-gravity-perturbed satellite orbiting an oblate planet subject to nonuniform equinoctial
precession. This nonuniformity of precession is caused by the presence of the other planets.
Their gravitational pull entails precession of the circumsolar orbit of our planet; this entails
variations of the solar torque acting on it; these torque variations make the planet’s equinoctial
precession nonuniform; and this nonuniformity, in its turn, influences the behaviour of the
planet’s satellites. This influence is feeble, and we trace with a high accuracy whether it results,
over aeons, in purely periodic changes in inclination or can accumulate to secular changes.

This work is but a small part of a larger project whose eventual goal is to build up a
comprehensive tool for computation of long-term orbital evolution of satellites. Building this
tool, block by block, we are beginning with only three components—the planet’s oblateness,
the direct pull of the Sun on the satellite, and the planet’s precession. These phenomena
bare a marked effect on the evolution of the orbit. In our subsequent publications, we shall
incorporate more effects into our model—the triaxiality, and the bodily tides.

1.2 Motivation

One motivation for this work stems from our intention to carry out an independent check
of whether the equinoctial-precession changes predicted for a rigid Mars by the Colombo
model could have been sufficient to repel its moons away from the equator. An answer to this
question, in combination with our knowledge of the current position of Phobos and Deimos,
will help us to understand whether the Martian obliquity variations could indeed have under-
gone the large variations resulting from the Colombo model, or whether the actual variations
ought to have smaller magnitude. Such a check is desirable because the current, Colombo-
model-based theory of equinoctial precession (Ward 1973; Touma and Wisdom 1993, 1994;
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Long-term evolution of orbits 263

Laskar and Robutel 1993), incorporates several approximations. First, the Colombo equa-
tion is derived under the assertion that the planet is rigid and is always in its principal spin
state, the angular-momentum vector staying parallel to the angular-velocity one. Second, this
description, being only a model, ignores the possibility of planetary catastrophes that might
have altered the planet’s spin mode. Third, this description ignores that sometimes even weak
dissipation (caused, for example, by tides) may be sufficient to quell chaos and regularise
the motion, which may be the case of Mars (Bills 2006). Fourth, it still remains a matter of
controversy as to whether the observed pattern of small craters on Mars confirms (Hartmann
2007) or disproves (Paige et al. 2007) the strong climatic variations predicted in Ward (1974,
1979). All this motivates us to come up with a test based on the necessity to reconcile the
variations of spin with the present near-equatorial positions of Phobos and Deimos. The fact
that both moons found themselves on near-equatorial orbits, in all likelihood, billions of
years ago,1 and that both are currently located within less than 2 degrees from the equator, is
surely more than a mere coincidence. An elegant but sketchy calculation by Goldreich (1965)
demonstrated that the orbits of initially near-equatorial satellites remain close to the equator
of date for as long as some simplifying assumptions remain valid. As explained in Efroimsky
(2004, 2005), these assumptions are valid over time scales not exceeding 100 million years,
while at longer times a more careful analysis is required. Its goal will be to explore the limits
for the possible secular drift of the satellite orbits away from the evolving equator of date.
Through comparison of these limits with the present location of the Martian satellites, we
shall be able to impose restrictions upon the long-term spin variations of Mars. If, however, it
turns out that near-equatorial satellites can, in the face of large equinoctial-precession varia-
tions, remain for billions of years close to the moving equator of date, then we shall admit that
Mars’ equator could indeed have precessed through billions of years in the manner predicted
by the Colombo approximation.

The second motivation for our study comes from the ongoing discussion of whether the
Martian satellites might have been captured at high inclinations, their orbits having gradually
approached the equator afterwards. While a comprehensive check of this hypothesis will need
a more detailed model—one that will include Mars’ triaxiality, the tidal forces (Lainey et al.
2008), and perhaps other perturbations—the first, rough sketch of this test can be carried out
with only J2, the Sun, and the equinoctial precession taken into account. We perform such a
rough check for a hypothetical satellite that has all the parameters of Deimos, except that its
initial inclination is 89◦.

1 Phobos and Deimos give every appearance of being captured asteroids of the carbonaceous chondritic type,
with cratered surfaces older than ∼109 years (Veverka 1977; Pang et al. 1978; Pollack et al. 1979; Tolson et al.
1978). If they were captured by gas drag (Burns 1972, 1978), this must have occurred early in the history of the
solar system while the gas disk was substantial enough. Kilgore, Burns, and Pollack (1978) have demonstrated
numerically that a gas envelope extending to about ten Martian radii, with a density of 5 × 10−5 g/cm3 at the
Martian surface, could have been capable of capturing satellites of radii about 10 km. At that stage of planetary
formation, the spin of the forming planet would be perpendicular to the planet’s orbit about the Sun—i.e., the
obliquity would be small and the gas disk would be nearly coplanar with the planetary orbit. Energetically, a
capture would likely be equatorial. This is most easily seen in the context of the restricted three-body problem.
The surfaces of zero velocity constrain any reasonable capture to occur from directions near the inner and
outer collinear Lagrange points (Szebehely 1967; Murison 1988), which lie in the equatorial plane. Also, a
somewhat inclined capture would quickly be equatorialised by the gas disk. If the capture inclination is too
high, the orbital energy is then too high to allow a long enough temporary capture, and the object would
hence not encounter enough drag over a long enough time to effect a permanent capture (Murison 1988).
Thus, Phobos and Deimos were likely (in as much as we can even use that term) to have been captured into
near-equatorial orbits.
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264 P. Gurfil et al.

1.3 Mathematical tools

The first steps toward the analytical theory of orbits about a precessing and nutating Earth were
undertaken almost half a century ago by Brouwer (1959), Proskurin and Batrakov (1960),
and Kozai (1960). The problem was considered, in application to the Martian satellites, by
Goldreich (1965) and, in regard to a circumlunar orbiter, by Brumberg et al. (1971). The
latter two publications addressed the dynamics as seen in a non-inertial frame co-precessing
with the planet’s equator of date. The analysis was carried out in terms of the so-called
“contact” Kepler elements, i.e., in terms of the Kepler elements satisfying a condition differ-
ent from that of osculation. Modeling of perturbed trajectories by sequences of instantaneous
ellipses (or hyperbolae) parameterised with such elements is sometimes very convenient
mathematically (Efroimsky 2006c). However, the physical interpretation of such solutions
is problematic, because instantaneous conics defined by nonosculating elements are non-
tangent to the trajectory. Though over restricted time scales the secular parts of the contact
elements may well approximate the secular parts of their osculating counterparts (Efroimsky
2004, 2005), the cleavage between them may grow at longer time scales. This is the reason
why a practically applicable treatment of the problem must be performed in the language of
osculating variables.

1.4 The plan

The analytical theory of orbits about a precessing oblate primary, in terms of the Kepler ele-
ments defined in a co-precessing (i.e., related to the equator of date) frame, was formulated in
Efroimsky (2006a, b) where the planetary equations were approximated by neglecting some
high-order terms and averaging the others. This way, from the exact equations for osculating
elements, approximate equations for their secular parts were obtained. We shall borrow those
averaged Lagrange-type planetary equations, shall incorporate into them the pull of the Sun,
and shall numerically explore their solutions. This will give us a method that will be semi-
analytical and seminumerical. We shall then apply it to a particular setting—evolution of a
Martian satellite and its reaction to the long-term variations of the spin state of Mars. Our
goal will be to explore whether the spin-axis variations predicted for a rigid Mars permit its
satellites to remain close to the equator of date for hundreds of millions through billions of
years. In case the answer to this question turns out to be negative, it will compel us to seek
nonrigidity-caused restrictions upon the spin variations. Otherwise, the calculations of the
rigid-Mars inclination variations will remain in force (and so will the subsequent calculations
of Mars obliquity variations); this way, the theory of Ward (1973, 1974, 1979, 1982), Touma
and Wisdom (1993, 1994), and Laskar and Robutel (1993) will get a model-independent
confirmation.

2 Semianalytical treatment of the problem

To understand the evolution of a satellite orbit about a precessing planet, it is natural to model
it with elements defined in a coordinate system associated with the equator of date, i.e., in
a frame co-precessing (but not co-rotating) with the planet. A transition from an inertial
frame to the co-precessing one is a perturbation that depends not only upon the instantaneous
position but also upon the instantaneous velocity of the satellite. It has been demonstrated
by Efroimsky and Goldreich (2004) that such perturbations enter the planetary equations
in a nontrivial way: not only do they alter the disturbing function (which is the negative
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Long-term evolution of orbits 265

Hamiltonian perturbation) but also they endow the equations with several extra terms that are
not parts of the disturbing function. Some of these nontrivial terms are linear in the planet’s
precession rate µ, some are quadratic in it; the rest are linear in its time derivative µ̇. The
inertial-forces-caused addition to the disturbing function (i.e., to the negative Hamiltonian
perturbation) consists of a term linear and a term quadratic in µ. (See formulae (53–54)
in Efroimsky (2004, 2005) or formulae (1) and (6) in Efroimsky (2006a, b).) The essence
of approximation elaborated in Ibid. was to neglect the quadratic terms and to substitute
the terms linear in µ and µ̇ with their secular parts calculated with precision up to e3,
inclusively.

2.1 Equations for the secular parts of osculating elements defined in a co-precessing
reference frame

We shall begin with five Lagrange-type planetary equations for the secular parts of the orbital
elements defined in a frame co-precessing with the equator of date. These equations, derived
in Efroimsky (2004, 2005), have the following form:

da

dt
= −2

µ̇⊥
n

a
(
1 − e2)1/2

, (1)

de

dt
= 5

2
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e
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(
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)2
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)2
(
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)
− µ⊥ + µn cot i
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〈
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(
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∂i

)〉
, (3)

di
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= −µ1 cos � − µ2 sin � + cos i

na2(1 − e2)1/2 sin i

〈
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(
−f × ∂f

∂ω

)〉
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na2 (1 − e2)1/2 sin i

〈
µ̇

(
−f × ∂f

∂�

)〉
, (4)

d�

dt
= −3

2
n J2

(ρe

a

)2 cos i
(
1 − e2

)2 − µn

sin i

+ 1

n a2(1 − e2)1/2 sin i

〈
µ̇

(
−f × ∂f

∂i

)〉
, (5)

The number of equations is five, because one element, Mo, was excluded by averaging
of the Hamiltonian perturbation and of the inertial terms emerging in the right-hand sides.

In the equations, n ≡
√

G
(
mprimary + msecondary

)
/a3, while f(t; a, e, i, ω,�,Mo) is the

implicit function that expresses the unperturbed two-body dependence of the position upon
the time and Keplerian elements. Vector µ denotes the total precession rate of the plane-
tary equator (including all spin variations—from the polar wander and nutations through the
Chandler wobble through the equinoctial precession through the longest-scale spin varia-
tions caused by the other planets’ pull), while µ1, µ2, µ3 stand for the components of µ in
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a co-precessing coordinate system x, y, z, the axes x and y belonging to the equator-of-date
plane, and the longitude of the node, �, being reckoned from x:

µ = µ1x̂ + µ2ŷ + µ3ẑ, where µ1 = İp, µ2 = ḣp sin Ip, µ3 = ḣp cos Ip, (6)

Ip, hp being the inclination and the longitude of the node of the equator of date relative to
that of epoch, and a dot standing for a time derivative. The quantity µ⊥ is a component of µ

directed along the instantaneous orbital momentum of the satellite, i.e., perpendicular to the
instantaneous osculating Keplerian ellipse. This component is expressed with

µ⊥ ≡ µ · w = µ1 sin i sin � − µ2 sin i cos � + µ3 cos i, (7)

the unit vector

w = x̂ sin i sin � − ŷ sin i cos � + ẑ cos i (8)

standing for the unit normal to the instantaneous osculating ellipse. Be mindful that µ̇⊥ is
defined not as d(µ · w)/dt but as

µ̇⊥ ≡ µ̇ · w = µ̇1 sin i sin � − µ̇2 sin i cos � + µ̇3 cos i. (9)

The quantity µn is a component pointing within the satellite’s orbital plane, in a direction
orthogonal to the line of nodes of the satellite orbit relative to the equator of date:

µn = −µ1 sin � cos i + µ2 cos � cos i + µ3 sin i

= −İp sin � cos i + ḣp sin Ip cos � cos i + ḣp cos Ip sin i. (10)

Its time derivative taken in the frame of reference co-precessing with the equator of date is:

µ̇n = −µ̇1 sin � cos i + µ̇2 cos � cos i + µ̇3 sin i

= −Ïp sin � cos i + (
ḧp sin Ip + ḣpİp cos Ip

)
cos � cos i

+ (
ḧp cos Ip − ḣpİp sin Ip

)
sin i. (11)

As shown in Efroimsky (2006a, b), the µ̇-dependent terms, emerging in Eqs. 1–5, are
expressed with
〈
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(
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)〉
= a2

4
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]
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]

+ µ̇3
[
5e2 sin 2ω sin i
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2

(
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Long-term evolution of orbits 267

To integrate Eqs. 1–5, with expressions (12–14) inserted therein, we shall need to know, at
each step of integration, the components of µ and µ̇.

2.2 Calculation of the components of µ and µ̇

At each step of our integration, the components of µ and µ̇ will be calculated in the Colombo
approximation. Physically, the essence of this approximation is two-fold: first, the solar torque
acting on the planet is replaced by its average over the year; and, second, the precessing planet
is assumed to be always in its principal spin state. While a detailed development (based on
the work by Colombo 1966) may be found in the Appendix to Efroimsky (2006a, b), here
we shall provide a concise list of resulting formulae to be used.

The components of µ are connected, through the medium of (6), with the inclination and
the longitude of the node of the moving planetary equator, Ip and hp , relative to some equator
of epoch. These quantities and their time derivatives are connected with the unit vector k̂
aimed in the direction of the major-inertia axis of the planet:

k̂ = (
sin Ip sin hp, − sin Ip cos hp, cos Ip

)T

. (15)

This unit vector and its time derivative

dk̂
dt

= (
İp cos Ip sin hp + ḣp sin Ip cos hp,

−İp cos Ip cos hp + ḣp sin Ip sin hp, −İp sin Ip

)T

, (16)

depend, through the Colombo equation

dk̂
dt

= α
(

n̂ · k̂
) (

k̂ × n̂
)

, (17)

upon the unit normal to the planetary orbit,

n̂ = (sin Iorb sin �orb, − sin Iorb cos �orb, cos Iorb)
T

, (18)

�orb and Iorb being the node and inclination of the orbit relative to some fiducial fixed plane,
and α being a parameter proportional to the oblateness factor J2. In our computations, we
employed the present-day2 value of α—see Table 5 below. We chose this value because it was
the one used by Ward (1973, 1974), and we wanted to make sure that our plot for obliquity
evolution, Fig. 3, coincided with that of Ward (1974).

To find the components of µ, one must know the time evolution of hp and Ip , which can
be determined by solving a system of three differential equations (17), with �orb and Iorb

being some known functions of time. These functions may be computed via the auxiliary
variables

q = sin Iorb sin �orb, p = sin Iorb cos �orb, (19)

2 An accurate treatment shows that due to the precession of the Martian orbit α exhibits quasi-periodic
variations of about 3% over long time scales. Neglecting this detail in the current work, we shall take it into
account at the further stage of our project (Lainey et al. 2008).
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Table 1 Numerical values
used in Ward’s model of the
inclination and node of the
Martian orbit

j Nj s′
j

[arcsec/yr] δ′
j

[deg]

1 0.0018011 −5.201537 272.06
2 0.0018012 −6.570802 210.06
3 −0.0358910 −18.743586 147.39
4 0.0502516 −17.633305 188.92
5 0.0096481 −25.733549 19.58
6 −0.0012561 −2.902663 207.48
7 −0.0012286 −0.677522 95.01

whose evolution will be given by the formulae:

q =
∞∑

j=1

Nj sin
(
s′
j t + δj

)
, (20)

p =
∞∑

j=1

Nj cos
(
s′
j t + δj

)
. (21)

The choice of amplitudes, frequencies, and phases as in Table 1 will make equations (19–21)
render �orb and Iorb relative to the solar system’s invariable plane (Ward 1974).3

The development by Ward (1974) is limited in precision. A more accurate treatment was
offered by Laskar (1988). At the future stages of our project, when developing a detailed
physical model of the satellite motion, we shall employ Laskar’s results. In the current paper,
we are checking if the orbital averaging of the precession-caused terms is permissible at large
time scales. Hence, for the purpose of this check, as well for the qualitative estimate of the
long-term behaviour of the satellites, we need a realistic, not necessarily highly accurate,
scenario of the precession variations.

2.3 The Goldreich approximation

The above semianalytical treatment not only yields plots of the time dependence of the mean
elements but also serves as a launching pad for analytical approximations. For example, an
assumption of a and e being constant, and a neglect of the µ̇-dependent terms in (4–5), as
well as of the term µn/ sin i in (5), gives birth to the Goldreich (1965) approximation:

da

dt
= 0, (22)

de

dt
= 0, (23)

di

dt
= −µ1 cos � − µ2 sin �, (24)

3 Ward (1974) has calculated the values of the coefficients N, s′, δ based on the work of Brouwer and van
Woerkom (1950) who had calculated the values of p and q relative to the ecliptic plane of 1950. Ward (1974)
transformed Brouwer and van Woerkom’s values to the solar system’s invariable plane. Be mindful that, no
matter what the reference plane, both Ward (1974) and Brouwer and van Woerkom (1950) used the same
epoch, J1950.

123



Long-term evolution of orbits 269

d�

dt
= −3

2
nJ2

(ρe

a

)2 cos i

(1 − e2)2 , (25)

dω

dt
= 3

4
n J2

(ρe

a

)2 5 cos2 i − 1

(1 − e2)2 + µn cos i

sin i
− µ⊥, (26)

the equinoctial precession being assumed uniform:

İp = 0 (27)

ḣp = −α cos Ip (28)

µ1 = 0 (29)

µ2 = ḣp sin Ip (30)

µ3 = ḣp cos Ip. (31)

For the details of Goldreich’s approximation see also Subsect. 3.3 in Efroimsky (2005).

2.4 The gravitational pull of the Sun

Reaction of a satellite on the planetary-equator precession is, in a way, an indirect reaction
of the satellite on the presence of the Sun and the other planets. Indeed, the pull of the other
planets makes the orbit of our planet precess, which entails variations in the Sun-produced
gravitational torque acting on the planet. These variations of the torque, in their turn, lead to
the variable equinoctial precession of the equator, precession “felt” by the satellite. It would
be unphysical to consider this, indirect effect of the Sun and the planets upon the satellite,
without taking into account their direct gravitational pull. In this subsection, we shall take
into account the pull of the Sun, which greatly dominates that of the planets other than the
primary.

In what follows, m and m′ will be the masses of the satellite and the Sun, correspondingly,
r and r′ will stand for the planetocentric positions of the satellite and the Sun, S will signify
the angle between these vectors. Then the Sun-caused perturbing potential RS , acting on the
satellite, will assume the form of

RS = Gm′
(

1

|r′ − r| − r′ · r
r ′3

)
= Gm′

r ′

(
r ′

|r′ − r| − r cos S

r ′

)
(32)

This can be expanded in a usual manner over the Legendre polynomials of the first kind.
Since r ′ � r , we shall take only the first term in the series:4

RS ≈ Gm′

r ′

[
1 + r

r ′ P1(cos S) +
( r

r ′
)2

P2(cos S) − r cos S

r ′

]
(33)

As the term Gm′/r ′ is not dependent of the satellite’s elements, one has only to consider
the restricted potential

R1
S = Gm′

r ′

[( r

r ′
)2

P2(cos S)

]
≈ n′2a2

2

(
a′

r ′

)3

(3 cos2 S − 1), (34)

n′ and a′ being the mean motion and the semi-major axis of the Sun.
To obtain the Lagrange-type equations for the third-body perturbation, we must first

derive an expression for the angle S. To that end, define the directional cosines ξ ≡ P̂ · r̂′ and

4 This is justified since the next term in the Legendre series is about 2 orders of magnitude smaller than the
potential variations generated by the precession.
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θ ≡ Q̂ · r̂′, where r̂′ is a unit vector pointing from the planet toward the Sun, while P̂ and Q̂
are unit vectors of a perifocal coordinate system associated with the osculating orbital plane
of the satellite, with P̂ pointing to the instantaneous periapse and Q̂ being orthogonal to P̂.
Assuming that the planet’s orbit about the Sun is circular, we arrive at

ξ = cos ω cos(� − M ′) − cos i sin ω sin(� − M ′), (35)

θ = − sin ω cos(� − M ′) − cos i cos ω sin(� − M ′), (36)

where M ′ is the mean anomaly of the Sun in the planetocentric frame. With aid of these
relations, the angle S may be written down as

cos S = ξ cos ν + θ sin ν, (37)

ν being the true anomaly of the satellite in the planetocentric coordinate system. Substituting
(35) and (36) into (37), and averaging over the satellite’s mean anomaly, we arrive at the
Lagrange-type equations:

da

dτ
= 0 (38a)

de

dτ
= 10 e

√
1 − e2

[
sin2 i sin 2ω + (2 − sin2 i) sin 2ω cos 2�̃

+ 2 cos i cos 2ω sin 2�̃
]

(38b)

di

dτ
= − 2 sin i√

1 − e2

{
5e2 cos i sin 2ω(1 − cos 2�̃)

− [
2 + e2(3 + 5 cos 2ω)

]
sin 2�̃

}
(38c)

dω

dτ
= 2√

1 − e2

{
4 + e2 − 5 sin2 i + 5(sin2 i − e2) cos 2ω + 5(e2 − 2)

× cos i sin 2ω sin 2�̃ + [
5(2 − e2 − sin2 i) cos 2ω − 2 − 3 e2 + 5 sin2 i

]

× cos 2�̃
}

(38d)

d�̃

dτ
= −κ − 2√

1 − e2

{[
2 + e2(3 − 5 cos 2ω)

]
(1 − cos 2�̃) cos i

−5e2 sin 2ω sin 2�̃
}

(38e)

where we used the following set of notations:

τ ≡ βn(t − t0), β = 3 m′a3

16 M a′3 (39)

κ ≡ 16 n

3 n′

(
1 + M

m′

)
(40)
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�̃ ≡ � − λ′, (41)

λ′ being the mean longitude of the Sun in the planet’s frame, and M being the mass
of Mars.

An additional averaging can be performed over the motion of the planet about the Sun.
Mathematically, this is the same as averaging over the motion of the Sun about the planet—in
both cases averaging over λ′ is implied. This averaging (Innanen et al. 1997) will simplify
(38) into

da

dt
= 0 (42a)

de

dt
= 10e

√
1 − e2βn sin2 i sin 2ω (42b)

di

dt
= −10e2 sin i√

1 − e2
βn cos i sin 2ω (42c)

dω

dt
= 2√

1 − e2
βn

[
4 + e2 − 5 sin2 i + 5(sin2 i − e2) cos 2ω

]
(42d)

d�

dt
= − 2√

1 − e2
βn

[
2 + e2(3 − 5 cos 2ω)

]
cos i (42e)

It is important to note that the calculations leading to equations (38), and to their double-
averaged version, (42), were performed in the Martian-orbital, and not Martian-equatorial
frame, without taking either the Martian obliquity or precession into consideration. Had we
taken into account the precession, we would get, on the right-hand side of (42) resonances
between the motion of the Sun relative to the planet and the equinoctial precession. Since the
time scale of the former exceeds, by orders of magnitude, the time scale of the latter, we may
safely omit such resonances. This justifies our neglect of the frame precession in the above
calculation.

However, the omission of the obliquity may have a serious effect on the results. Thus, we
shall generalize equations (38) so as to include the effect of the solar inclination and node
in a Martian-centric frame. This generalized model based on the celebrated works by Kozai
(1959) and Cook (1962) gives us:

da

dt
= 0 (43a)

de

dt
= −15n′2e

√
1 − e2

4n

[
2AB cos(2ω) − (A2 − B2) sin(2ω)

]
(43b)

di

dt
= 3n′2C

4n
√

1 − e2

{
A

[
2 + 3e2 + 5e2 cos(2ω)

] + 5Be2 sin(2ω)
}

(43c)

dω

dt
= −�̇ cos i + 3n′2√1 − e2

2n

×
[

5AB sin(2ω) + 5

2
(A2 − B2) cos(2ω) − 1 + 3(A2 + B2)

2

]

+15n′2a(A cos ω + B sin ω)

4nea′

[
1 − 5

4
(A2 + B2)

]
(43d)

d�

dt
= 3n′2C

4n
√

1 − e2 sin i

{
5Ae2 sin(2ω) + B

[
2 + 3e2 − 5e2 cos(2ω)

]}
(43e)
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where

A = cos(� − �′) cos(λ′) + cos(i′) sin(λ′) sin(� − �′) (44a)

B = cos i
[− sin(� − �′) cos(λ′) + cos(i′) sin(λ′) cos(� − �′)

]

+ sin i sin(i′) sin(λ′) (44b)

C = sin i
[
cos λ′ sin(� − �′) − cos(i′) sin(λ′) cos(� − �′)

]

+ cos i sin i′ sin λ′ (44c)

Here, i′ and �′ are the inclination and right ascension of the ascending node of the Solar
orbit in the Martian equatorial frame, respectively. The doubly averaged equations, obtained
after averaging over the Sun’s mean anomaly for a single period, are given by

da

dt
= 0 (45a)

de

dt
= −15n′2e

√
1 − e2

4n

[
2AB cos(2ω) − (A2 − B2) sin(2ω)

]
(45b)

di

dt
= 3n′2

4n
√

1 − e2

{
CA

[
2 + 3e2 + 5e2 cos(2ω)

] + 5CBe2 sin(2ω)
}

(45c)

dω

dt
= −�̇ cos i + 3n′2√1 − e2

2n

×
[

5AB sin(2ω) + 5

2
(A2 − B2) cos(2ω) − 1 + 3(A2 + B2)

2

]

(45d)

d�

dt
= 3n′2

4n
√

1 − e2 sin i

{
5CAe2 sin(2ω) + CB

[
2 + 3e2 − 5e2 cos(2ω)

]}
(45e)

the averaged quantities A2, B2, AB,AC,BC being given by

A2 = [
s2
i′c

2
�′ − 0.5 s2

i′
]

c2
� + s2

i′s�′s�′s�c�′c� + 0.5 − 0.5s2
i′c

2
�′ (46a)

B2 = {(
s2
i′c

2
�′ + 0.5s2

i′
)

c2
� − s�′s2

i′s�c�′c� + 0.5s2
i′c

2
�′ − 0.5 + c2

i′
}

c2
i

+ (ci′c�c�′ + ci′s�s�′) si′sici + 0.5s2
i′ (46b)

AB = {
s2
i′s�′c�′c2

� + [−s2
i′s�c2

�′ + 0.5s2
i′s�

]
c� − 0.5s2

i′s�′c�′
}

ci

+ 0.5ci′ (s�c�′ − c�s�′) si′si (46c)

AC = 0.5 ci′ (s�c�′ − c�s�′) si′ci

+ {−s2
i′s�′c�′c2

� + [−s2
i′((s�)2c2

�′)
]

c� + 0.5s2
i′s�′c�′

}
si (46d)

BC = (ci′c�c�′ + ci′s�s�′) si′c
2
i

+ {[
s2
i′ (c�′)2 − 0.5 (si′)

2] c2
� − s2

i′s�′s�c�′c� + −0.5s2
i′c

2
�′ − c2

i′ + 0.5
}

sici

− 0.5 (ci′s�s�′ + ci′c�c�′) si′ (46e)

where we have used the compact notation c(·) = cos(·), s(·) = sin(·). To calculate the trig-
onometric functions of �′ and i′ appearing in equations (46), we shall utilise the geometry
rendered Fig. 1. The figure depicts the Martian spin axis, k̂, that is perpendicular to the equa-
tor of date, and the normal to the orbital plane (ecliptic of date), n̂. The Martian obliquity, ε,
is the angle between these two vectors, and is calculated based on the Colombo formalism:

cos ε = k̂ · n̂ = q sx + p sy + F sz (47)
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Fig. 1 The geometry of the precessing Mars. The Martian spin axis, k̂, is perpendicular to the equator of date,
and the normal to the orbital plane (ecliptic of date), n̂. The Martian obliquity, ε, is the angle between these
two vectors

where

sx = sin Ip sin hp, sy = sin Ip cos hp, sz = cos Ip, F =
√

1 − p2 − q2 (48)

and i′ = ε.
The angle �′, lying in the equator of date, is subtended between the vectors LON12 and

LON23. The first of these, LON12, points along the line-of-nodes obtained by the intersection
of the equator of date and the invariable plane. This vector must be perpendicular to the plane
defined by k̂ and ẑ (the normal to the invariable plane), so that

LON21 = ẑ × k̂ = [sy, sx, 0]T (49)

The second vector, LON23, is aimed along the line of nodes rendered by the intersection of
the orbital plane and the equator of date. Based on the geometry of Fig. 1, we write:

LON23 = k̂ × n̂ = [−syF + sz p, szq − sxF, −sxp + syq]T (50)

By taking the scalar product of LON23 and LON21, we derive the direction cosine:

cos �′ = LON23 · LON21

|LON23||LON21| = cos Ip cos i′ − cos Iorb

sin Ip sin i′
(51)

To derive an expression for sin �′, we shall have to compute an auxiliary vector, ĵ, which lies
in the orbital plane and is normal to both k̂ and LON21 (cf. Fig. 1):

ĵ ≡ k̂ × LON21 = [−szsx, szsy, s2
x + s2

y ]T (52)

The direction cosine between ĵ and LON23 is then

cos
(π

2
− �′) = LON23 · ĵ

|LON23||ĵ|
(53)

Upon evaluating Eq. 53 we arrive at
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sin �′ = q cos hp − p sin hp

sin i′
(54)

Finally, the calculation of the orbital-elements’ evolution is performed via Lagrange-type
planetary equations, whose right-hand sides combine those of (1)–(5) and (45).

2.5 The higher-order harmonics, the gravitational pull of the planets,
the Yarkovsky effect, and the bodily tides

In the current paper, we pursue a limited goal of taking into account the oblateness of the
planet, its nonuniform equinoctial precession, and the gravitational pull of the Sun. These
three items certainly do not exhaust the list of factors influencing the orbit evolution of a
satellite.

Among the factors that we intend to include into the model at the further stage of its devel-
opment are the high-order zonal (J3, J4, J

2
2 ) and tesseral (C22) harmonics of the planet’s

gravity field, as well as the gravitational pull of the other planets—factors whose role was
comprehensively discussed, for example, by Waz (2004). We also intend to include the bodily
tides (Efroimsky and Lainey 2007) and the Yarkovsky effect (Nesvorný and Vokrouhlický
2007)—factors whose importance increases at long time scales.

3 Comparison of a purely numerical and a semianalytical treatment
of the problem

One of our goals is to check the applicability limits (both in terms of the initial conditions and
the permissible time scales) of our semianalytical model written for the osculating elements
introduced in a frame co-precessing with the equator of date. This check will be performed by
an independent, purely numerical, computation that will be free from whatever simplifying
assumptions (all terms kept, no averaging performed.) The straightforward simulation will be
carried out in terms of Cartesian coordinates and velocities defined in an inertial frame of ref-
erence. Both the semianalytical calculation of the elements in a co-precessing frame and the
straightforward numerical integration in inertial Cartesian axes will be carried out for Deimos.

3.1 Integration by a purely numerical approach

The numerical integration of Deimos’ orbit can be performed using Cartesian coordinates
defined relatively to the Solar system invariable plane. As we also have to compute the
Martian polar axis motion, there are two vector differential equations to integrate simulta-
neously. One is the Newton gravity law:

r̈ = −G(M + m)r
r3 + Gm′

(
r′ − r

|r′ − r|3 − r′

r ′3

)
+ G(M + m)∇U, (55)

where ∇U has components
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂xU = ρ2
e J2

r4

[
x

r

(
15

2
sin2 φ − 3

2

)
− 3 sin φ sin Ip sin hp

]

∂yU = ρ2
e J2

r4

[
y

r

(
15

2
sin2 φ − 3

2

)
+ 3 sin φ sin Ip cos hp

]

∂zU = ρ2
e J2

r4

[
z

r

(
15

2
sin2 φ − 3

2

)
− 3 sin φ cos Ip

]
.

(56)
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Here φ and r = (x, y, z) denote, correspondingly, the latitude of Deimos relative to the
Martian equator and the position vector of Deimos related to the Martian center of mass; ρe

is the Martian equatorial radius; M and m stand for the masses of Mars and Deimos, respec-
tively. Angles hp and Ip are the longitude of the node and the inclination of the planet’s
equator of date relative to the invariable plane (see Sect. 2.2). Integration in this, inertial,
frame offers the obvious advantage of nullifying the inertial forces.

Table 2 gives the initial conditions for our simulation, expressed in terms of the Keplerian
orbital elements. Table 3 presents these initial conditions in a more practical form, i.e., in
terms of the Cartesian positions and velocities corresponding to the said elements. A tran-
sition from the Keplerian elements to these Cartesian positions and velocities is a two-step
process. First, we take orbital elements defined in a frame associated with the Martian equa-
tor of date (i.e., in a frame co-precessing but not co-rotating with the planet) and transform
them into Cartesian coordinates and velocities defined in that same frame. Then, by two
successive rotations of angles −Ip and −hp , we transform them into Cartesian coordinates
and velocities related to the invariable plane. These initial positions and velocities were used
to begin the integration.

At each step of integration of (55), the same two rotations are performed on the compo-
nents ∇U given by (56). As mentioned above, to afford the absence of inertial forces on the
right-hand side of (55) one must write down and integrate (55) in the inertial frame. Since the
analytical expressions (56) for ∇U contain the latitude φ, they are valid in the co-precessing
coordinate system and, therefore, need to be transformed to the inertial frame at each step. To
carry out the transformation, one needs to know, at each step, the relative orientation of the
Martian polar axis and the inertial coordinate system. The orientation is given by the afore
mentioned Colombo model. This is how our second equation, the one of Colombo, comes
into play:

dk
dt

= α(k̂ · n̂)(k̂ × n̂). (57)

All in all, we have to integrate the system (55–57). Table 4 gives the initial conditions
used for integrating (57), while Table 5 gives the numerical values used for the parameters

Table 2 The orbital elements
values taken as initial conditions
for our simulations

Parameters Numerical values

a 23459 km
e 0.0005
i 0.5 deg and 89 deg
� 10 deg
ω 5 deg
M 0 deg

Table 3 The initial positions and velocities used for Deimos. The first two rows correspond to the low-
inclination case (0.5 degree); the last two rows correspond to the high-inclination case (89 degrees)

Satellite x y z

Position km (i = 0.5) 22648.3376439 6068.52353055 17.8332361962
Velocity km/s (i = 0.5) −0.349882011871 1.30576017694 1.175229063323×10−2

Position km (i = 89) 22996.9921622 4091.20549954 2043.25303109
Velocity km/s (i = 89) −0.120115009144 2.686751629968×10−3 1.34652528539
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Table 4 Initial conditions used
for the integration of Eq. 57.
These values were calculated
based on Ward (1974)

Parameters Numerical values

Ip(t0) 25.25797549 deg
hp(t0) 332.6841708 deg

Table 5 Parameter values
used in our simulations

Parameters Numerical values

Martian mass (GM) 42830 km3 s−2

J2 1960.45 × 10−6

Equatorial radius 3397 km
Deimos mass 0.091 × 10−3 km3 s−2

α 3.9735 × 10−5 rad/yr

involved. It is worth noting that the values of Table 4 were calculated based on Ward
(1974).

The software used for numerical integration of the system (55–57) is called NOE (Numeri-
cal Orbit and Ephemerides), and is largely based on the ideas and methods developed in Lainey
et al. (2004). This numerical tool was created at the Royal Observatory of Belgium mainly for
computations of the natural satellite ephemerides. It is an N -body code, which incorporates
highly sensitive modelling and can generate partial derivatives. The latter are needed when
one wants to fit the initial positions, velocities, and other parameters to the observation data.
To save the computer time, an optimised force subroutine was built into the code, specifically
for integrating the above equations. This appliance, based on the RA15 integrator offered by
Everhart (1985), was chosen for its speed and accuracy. During the integration, a variable
step size with an initial value of 0.04 day was used. To control the numerical error, back and
forth integrations were performed. In particular, we carried out a trial simulation consisting
of a thousand-year forward and a subsequent thousand-year back integration. The satellite
displacement due to the error accumulated through this trial was constrained to 150 m. Most
of this 150 m difference comes from a numerical drift of the longitude, while the numerical
errors in the computation of the semi-major axis, the eccentricity, and the inclination were
much lower. These errors were reduced for this trial simulation to only 10−5 km, 10−10,
and 10−10 degree, respectively. This provided us with a high confidence in our subsequent
numerical results.

As a complement to the said back-and-forth check, the energy-conservation criterium was
used to deduce, in the first approximation, an optimal initial step-size value and to figure out
the numerical error proliferation. (It is for this energy-conservation test that we introduced
a non-zero mass for Deimos. Its value was taken from Smith et al. (1995).) Applicability of
this criterium is justified by the fact that the numerical errors are induced mostly by the fast
orbital motion of the satellite.5

5 Although the planet-satellite system is subject to an external influence (the solar torque acting on the planet),
over short time scales this system can be assumed closed. In order to check the integrator efficiency and to
determine an optimal initial step size, we carried out auxiliary integrations of (55)–(56), with the Colombo
equation (57) neglected and with the energy presumed to conserve. These several-thousand-year-long trial inte-
grations, with the energy-conservation criterium applied, led us to the conclusion that our integrator remained
steady over long time scales and that the initial step of 0.04 day was optimal. Then this initial step size was
employed in our integration of the full system (55)–(57).
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3.2 Integration by the semianalytical approach

The theory of satellite-orbit evolution, based on the planetary equations whose right-hand
sides combine those of (1–5) and (45), is semianalytical. This means that these equations for
the elements’ secular parts are derived analytically, but their integration is to be performed
numerically. This integration was carried out using an 8th-order Runge-Kutta scheme with
relative and absolute tolerances of 10−12. Kilograms, years, and kilometers were taken as
the mass, time, and length units, correspondingly.

3.2.1 Technicalities

To integrate the planetary equations, one should know, at each time step, the values of İp and
ḣp, which are the time derivatives of the inclination and of the longitude of the node of the
equator of date with respect to the equator of epoch. These derivatives will be rendered by
the Colombo equation (17), after formulae (15–16) get inserted therein:

İp = −α

(
q2 sin Ip sin hp cos hp − qp sin Ip + 2pq sin Ip cos2 hp

−p2 sin Ip cos hp sin hp + q

√
1 − q2 − p2 cos Ip cos hp

− p

√
1 − q2 − p2 cos Ip sin hp

)
, (58)

and

ḣp = −α

{[
(
p − 2p cos2 Ip

)
cos hp +

(−q + 2q cos2 Ip

)
cos2 hp − 2q cos2 Ip + q

sin hp

]

×
√

1 − p2 − q2

sin Ip

+ (
q2 − p2) cos Ip cos2 hp + (−p2 − 2q2 + 1

)
cos Ip

+ 2qp cos Ip cos3 hp − 2pq cos hp cos Ip

sin hp

}

. (59)

Equations (58) and (59) are then integrated (with the initial conditions Ip(t0) and hp(t0) bor-
rowed from Table 4) simultaneously with the planetary equations (1–5). Through formulae
(6), the above expressions for İp and ḣp yield the expressions for the components of µ. As
can be seen from (12–14), integration of the planetary equations also requires the knowledge
of the derivatives µ̇1 , µ̇2, and µ̇3 at each integration step. These can be readily obtained
by differentiating (6). The resulting closed-formed expressions for µ̇1, µ̇2, µ̇3 are listed in
Appendix A. The final step required for numerical integration of the planetary equations is
substitution of formulae (9–11), with the initial conditions from Table 2.

3.2.2 The plots and their interpretation

Figure 2 depicts the history of the planetary equator, in the Colombo approximation, over 1
Byr. The inclination exhibits long-periodic oscillations bounded within the range of 20.3 deg
≤ Ip ≤ 30.3 deg, while the node regresses at a rate of ḣp = 0.00202 deg /yr. The obliquity,
ε, varies in the range 15.2 deg ≤ ε ≤ 35.5 deg. A magnified view of the obliquity for 5 Myr
is shown in Fig. 3. The time history of the obliquity closely matches the results reported by
Ward (1974).
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Fig. 2 Evolution of the Martian inclination, the longitude of the node of the equator of date relative to that of
epoch, and the obliquity over 1 Byr, obtained in the Colombo approximation

0 1 2 3 4 5

x 10
6

15

20

25

30

35

Time [yr]

ε 
[d

eg
]

Fig. 3 Evolution of the the Martian obliquity for 5 Myr, calculated through formula (47). This curve closely
matches the result of Ward (1974)

Integration of our semianalytical model gives plots depicted in Figs. 4 and 5, for a low
initial inclination, and in Figs. 6–7, for a high initial inclination. From Fig. 4 we see that
the variable equinoctial precession does not inflict considerable changes upon the satellite’s
inclination relative to the precessing equator of date. The orbit inclination remains bounded
within the region 0.3 deg ≤ i ≤ 2.5 deg. This means that the “Goldreich lock” (inclination
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Fig. 4 Evolution of the inclination (initially set to 0.5 degree) and of the longitude of the node of Deimos
over 1 Byr. The plot, obtained by integration of the semianalytical model, exhibits inclination locking and a
uniform regression of the node

“locking,” predicted by the Goldreich (1965) model for small inclinations and for uniform
equinoctial precession) works also for nonuniform Colombo precession of the equator.

However, this observation no longer holds for large initial inclinations. In the i0 = 89 deg
case, it is clearly seen that the node is greatly affected by the presence of the equinoctial pre-
cession. The equinoctial precession also affects the magnitude of the inclination variations.
This case exhibits chaotic dynamics that are sensitive to any additional perturbing inputs.
Figure 6 shows that without precession the inclination of Deimos’ orbit varies within the
range of 84.5 deg ≤ i ≤ 95 deg. With the precession included, the inclination gains about
one degree in amplitude, varying in the range 83.5 deg ≤ i ≤ 96 deg. This effect is accentu-
ated when examining a magnification of the inclination over a 5 Myr span, as shown in Fig. 6.
The chaotic nature of the inclination is clearly seen. The irregular dynamics is characterised
by chaotic switches between the maximum and minimum inclination values, a phenomenon
referred to as “crankshaft”, to be further discussed in the sequel.

Both in the near-equatorial case (as in Fig. 5) and the near-polar case (as in Fig. 7),
variations of the semimajor axis are of order 10−6%. This smallness is in compliance with
formula (44) in Efroimsky (2006a, b), according to which the changes of a generated by
the variations of the equinoctial precession rate are extremely small. (Formula (38a) from
Subsect. 2.4 above tells us that the direct pull of the Sun exerts no influence upon a at all.)

Similarly, in both cases (Figs. 5 and 7) the variations of eccentricity, remain small, about
10−3%. While formula (44) in Efroimsky (2006a, b) promises to e only tiny variations due to
precession, our formula (38b) from Subsect. 2.4 above gives to e a slightly higher variation
rate, rate that still remains insufficient to raise the quasiperiodic changes in e above a fraction
of percent.
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Fig. 5 Evolution of the semimajor axis, eccentricity, and argument of periapsis of Deimos over 1 Byr. (The
inclination was initially set to 0.5 degree.) Both the semimajor axis and eccentricity exhibit quasiperiodic
motion about their initial values. (The variations of the semimajor axis and eccentricity are so small that it
is more convenient to plot a − a0 and e − e0.) The plots were obtained by integration of the semianalytical
model

The plots in Figs. 5 and 7 depict also the time evolution of ω. The line of apsides steadily
regresses in the near-polar case and steadily advances in the near-equatorial case.

To examine the precision of our semianalytical model, we have compared the results of
its integration with the results stemming from a purely numerical simulation performed in
terms of inertial Cartesian coordinates and velocities (see Subsect. 3.1). The necessity for this
check was dictated, mainly, by the fact that within the semianalytical model the short-period
terms are averaged out,6 while the straightforward numerical integration of (55–56) neglects
nothing. We carried out comparison of the two methods over 10 Myr only. The outcomes,
both for i0 = 0.5 degrees and i0 = 89 deg, were in a good agreement. As an example,
the top plot in Fig. 8 shows the comparison of the inclination evolution calculated by the
semianalytical and purely numerical methods over 10 Myr in the case of i0 = 0.5 deg. The
bottom plot in Fig. 8 depicts a similar comparison for the case of i0 = 89 deg. Since the
inclination exhibits chaotic behaviour, comparing the semianalytical and purely numerical
calculations point-by-point (i. e., computing the differences between these two signals) would
not be useful. Therefore, we chose to compare the mean and standard deviation (STD) of
the inclination, in the semianalytical and purely numerical simulations. We also compared
the extremum values. The results of this comparison are summarised by Table 6. The table
quantifies the agreement between the models depicted by Fig. 8. It clearly demonstrates that
the two simulations agree up to fractions of a percent.

6 We remind that in equations (1–5) the exact µ-dependent terms are substituted with their orbital averages
(12–14).
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Fig. 6 Evolution of the inclination and of the longitude of the node of Deimos over 1 Byr. (The inclina-
tion was initially set to 89 degrees.) The plot, obtained by integration of the semianalytical model, exhibits
inclination variation in the range ±5 deg and a chaotic evolution of the node; if precession is neglected, the
inclination oscillations are smaller in magnitude. The chaotic nature of the inclination variation is referred to
as “crankshaft chaos”

All in all, the outcome of our computations is two-fold. First, we have made sure that the
semianalytical model perfectly describes the dynamics over time scales of, at least, dozens
of millions of years. Stated differently, the short-period terms and the terms of order O(µ2)

play no role over these time spans. Second, we have made sure that the “Goldreich lock”
initially derived for very low inclinations and for uniform equinoctial precession, works well
also for variable precession, though for low initial inclinations only.
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Fig. 7 Evolution of the semi-major axis, eccentricity, and argument of periapsis of Deimos over 1 Byr. (The
inclination was initially set to 89 degrees.) The semi-major axis exhibits chaotic behavior and the eccentricity
exhibits long-periodic motion about the initial value. (The variations of the semimajor axis are so small that it
is more convenient to plot a − ao rather than a.) The plots were obtained by integration of the semianalytical
model

Table 6 Statistical properties of the inclination. Comparison of the results of the semianalytical and the purely
numerical computation

i0 [deg] Model STD [deg] Mean [deg] Max. value [deg] Min. value [deg]

0.5 Semianalytical 0.60 1.519 2.45 0.3063
Cartesian 0.601 1.53 2.465 0.3056

89 Semianalytical 3.10 90.085 95.9713 84.027
Cartesian 3.09 89.92 95.9769 84.0054

3.2.3 Looking for trouble

A natural question arises as to whether the considered examples are representative. One may
enquire if, perhaps, there still exists a combination of the initial conditions yielding noticeable
variations of the satellite orbit inclination during the primary’s variable equinoctial preces-
sion over vast spans of time. To answer this question, we should scan through all the possible
combinations of initial conditions, to identify a particular combination that would entail a
maximal inclination excursion relative to the initial inclination (Gurfil et al. 2002). Stated
more formally, we should seek a set of initial conditions {h�

p0, I
�
p0, i�0,�

�
0, ω

�
0} maximising

the objective function |i(t) − i0|:
{h�

p0, I
�
p0, i

�
0,��

0, ω
�
0} = arg max

t,hp0,Ip0

i0,�0,ω0

|i(t) − i0| (60)
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Fig. 8 Comparison of the semi-analytical model to a purely numerical integration. The plot shows the incli-
nation as predicted by the two models. The top plot shows the case of the initial inclination i0 = 0.5 deg. In
this case, the standard deviation of the inclination in the semianalytical and inertial models differs by 0.175%,
and the mean value by 0.77%. The bottom plot shows the case of the initial inclination i0 = 89 deg. In
this case, the differences between the semianalytical and the numerical model amount to 0.4% in standard
deviation and 0.18% in the mean value

This problem belongs to the realm of optimisation theory. The optimisation space is consti-
tuted by the entire multitude of the permissible initial conditions. The sought after combina-
tion of initial conditions will be called the optimal set.

In this situation, the traditional optimisation schemes (such as the gradient search or the
simplex method) may fail due to the rich dynamical structure of our problem—these methods
may lead us to a local extremum only. Thus, the search needs to be global. It can be carried
out by means of Genetic Algorithms (GA’s) (Goldberg 1989; Gurfil et al. 2002; Gurfil and
Kasdin 2002a, b). These are wont to supersede the traditional optimisation procedures in the
following aspects. First, instead of directly dealing with the parameters, the GA’s employ
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Table 7 Parameter values used
for the GA optimization

Parameters Numerical values

Population size 30
Number of generations 100
String length 16 bit
Probability of crossover 0.99
Probability of mutation 0.02

codings (usually, binary) of the parameter set (“strings,” in the GA terminology). Second,
instead of addressing a single point of the optimisation space, the GAs perform a search inside
a population of the initial conditions. Third, instead of processing derivatives or whatever
other auxiliary information, the GAs use only objective-function evaluations (“fitness eval-
uations”). Fourth, instead of deterministic rules to reiterate, the GAs rely upon probabilistic
transition rules. Additional details on the particular GA mechanism used herein can be found
in Appendix B.

A GA optimisation was implemented using the parameter values given in Table 7.
The search for the inclination-maximising initial conditions resulted in the following set:

I �
p0 = 72.5 deg, h�

p0 = 211.324 deg, i�0 = 100.543 deg,

��
0 = 111.538 deg, ω�

0 = 234.913 deg . (61)

Thus, the initial orbit is retrograde and, not surprisingly, near-polar. The resulting time his-
tories for a 0.2 Byr integration are depicted in Fig. 9, for i and �. In both cases the inclination
amplitude is relatively large: The inclination varies within the range of 79 deg < i < 102 deg.

This example clearly shows that the equinoctial precession is an important effect for
evolution of satellite orbits. As shown in the upper pane of Fig. 9, had we neglected the
precession, the magnitude of the oscillations would be about twice smaller. The inclusion
of the precession in the model qualitatively modifies the behavior, inducing large-magnitude
chaotic variations of the inclination, a phenomenon that cannot be detected without including
the precession alongside the oblateness and solar gravity.

4 Comparison of the semianalytical results with those rendered
by Goldreich’s model

The final step in our study will be to compare the semianalytical model to Goldreich’s approx-
imation (22–26). To that end, we integrate our semianalytical model for 20 Myr, using the
initial conditions from Table 2 with i0 = 89 deg; and compare the outcome with that resulting
from Goldreich’s approximation simulated with the same initial conditions. The results of this
comparison are depicted in Figs. 10 and 11. Specifically, Fig. 10 compares the time histories of
Ip and hp . There are noticeable differences in the dynamics of Ip . While Goldreich’s approx-
imation assumes a constant Ip , the semianalytical model is based on the Colombo calculation
of the equinoctial precession, calculation that predicts considerable oscillations within the
range 21 deg ≤ Ip ≤ 30 deg. Beside this, in our semianalytical model we take into account
the direct gravitational pull exerted by the Sun on the satellite. All this entails differences
between the dynamics predicted by our semianalytical model and the dynamics stemming
from the Goldreich approximation. These differences, for i and �, are depicted in Fig. 11.
In Goldreich’s model, i stays very close to the initial value: 88.27 deg ≤ i ≤ 89.01 deg,
a behaviour that makes the essence of the Goldreich lock. However, in the more accurate,
semianalytical model we have 84 deg ≤ i ≤ 96 deg. The time history of �, too, reveals that
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Fig. 9 Evolution of the inclination and longitude of the node, for the initial conditions that entail maximal
variations of the orbit inclination. The plot, obtained by integration of the semianalytical model, demonstrates
that the inclination, initially set at 100.5 deg, plunges to less than 80 deg and then returns to its initial value.
The switches between maximum and minimum values exhibit “crankshaft” chaos. Without precession, the
inclination magnitude is much smaller, and the node regresses uniformly

Goldreich’s approximation does not adequately model the actual dynamics, since it predicts
a much larger secular change than the semi-analytical model.

All in all, the dynamics (i.e., particular trajectories) predicted by the two models are
quantitatively different. At the same time, when it comes to the most physically important
conclusion from the Goldreich approximation, the “Goldreich lock” of the inclination, one
may still say that, qualitatively, the semianalytical model confirms the locking even in the case
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Fig. 11 Comparison of the semi-analytical model to Goldreich’s model for a satellite of Deimos’ mass and
with the initial conditions given by (61). While in Goldreich’s model the inclination remains tightly locked,
the semianalytical model reveals much larger variations of i
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when the equinoctial precession is variable, and the solar pull on the satellite is included.
The locking survives even for highly inclined satellite orbits. It is, though, not as stiff as
predicted by the Goldreich model: we can see from Fig. 11 that the orbit inclination varies
within a five-degree span, while the Goldreich approximation would constrain it to fractions
of a degree.

An intriguing fine feature of the inclination evolution, which manifests itself for orbits
close to polar, is the “crankshaft”. This kind of behaviour, well defined in Fig. 11, is not
rendered by the Goldreich model, because that model was initially developed for small
inclinations and uniform precession. One might suspect that the “crankshaft” is merely a
numerical artefact, had it not been discovered under different circumstances (in the absence
of precession but in the presence of a third body) by Zhang and Hamilton (2005). This kind
of pattern may be generic for the close vicinity of i = 90 deg.

5 Conclusions

In the article thus far, we continued developing a tool for exploring long-term evolution of a
satellite orbit about a precessing oblate primary. In particular, we were interested in the time-
dependence of the orbit inclination relative to the moving equator of date. Our model includes
three factors: J2 of the planet, the planet’s nonuniform equinoctial precession described by
the Colombo formalism, and the gravitational pull exerted by the Sun on the satellite. The
problem was approached using different methods. One, semianalytical, was based on numer-
ical integration of the averaged Lagrange-type equations for the secular parts of the Keplerian
orbital elements introduced in a noninertial reference frame coprecessing with the planetary
equator of date. The right-hand sides of these equations consisted of precession-generated
contributions and contributions due to the direct pull of the Sun. The other approach was
a straightforward, purely numerical, computation of the satellite dynamics using Cartesian
coordinates in a quasi-inertial reference frame.

The results of both computations have demonstrated a good agreement over 10 Myr. This
means that the semianalytical model adequately describes the dynamics over this time span.
Specifically, the terms neglected in the semianalytical model (the short-period terms and the
terms of order O(µ2)) play no significant role on this time scale.

Our calculations have shown the advantages and the limitations of a simple model devel-
oped by Goldreich (1965) for uniform equinoctial precession and low inclinations. Though
his model does not adequately describe the dynamics (that turns out to be chaotic), the main
physical prediction of Goldreich’s model—the “Goldreich lock”—sustains the presence of
the Sun and variations of equinoctial precession, provided the initial inclination is suffi-
ciently low. For low initial inclinations, the inclination exhibits variations of order fractions
of a degree. For higher inclinations, however, it varies already within a span of about ten
degrees. For near-polar orbits, the inclination behaviour demonstrates the “crankshaft”, an
chaotic pattern not accounted for by the Goldreich model. The “crankshaft” emerges because
in our model both the precession variations and the pull of the Sun are included into the model.
However, numerical experiments have also shown that the “crankshaft” gets generated by
each of these two factors separately.
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Appendix A: Closed-form expressions for µ̇1, µ̇2, µ̇3

Using the compact notation c(·) ≡ cos(·) and s(·) ≡ sin(·), and conforming to the procedure
described in the text, we obtain the following expressions for µ̇1, µ̇2, µ̇3:

µ̇1 = (((6 p2q2 − p4 − q4)(cIp )3 + (−6 p2q2 + p4 + q4)cIp )(chp )4

+ ((−3 p4 − 6 p2q2 − 3 q2 + 3 p2 + 5 q4)(cIp )3

+ (2 p4 − 4 q4 + 6 p2q2 − 2 p2 + 2 q2)cIp ) · (c(hp))2

+ (3 q2 − 3 p2q2 − 4 q4)(cIp )3 + (3 q4 − 2 q2 + 2 p2q2)cIp

+ (((4 qp3 − 4 q3p)(cIp )3 + (4 q3p − 4 qp3)cIp )(chp )5

+ ((2 qp3 − 6 qp + 14 q3p)(cIp )3

+ (−12 q3p + 4 qp)cIp )(chp )3 + ((6 qp − 10 q3p − 6 qp3)(cIp )3

+ (4 qp3 + 8 q3p − 4 qp)cIp )chp ) · (shp )−1)(sIp )−1

+ ((−9 pq2 + 9 pq4 − 3 p5 + 3 p3 + 6 p3q2)(cIp )2 + 3 pq2 − 2 p3q2 + p5

− 3pq4 − p3)(c3
hp

+ ((−11 p3q2 − p5 − 10 pq4 − p + 2 p3 + 11 pq2)(c(Ip))2

+ 3pq4 + 3 p3q2 − 3pq2)chp + (((−9 p2q + 6 p2q3 + 9 p4q − 3 q5 + 3 q3)(cIp )2

− 3p4q + 3 p2q − 2 p2q3

− q3 + q5)(c4
hp

+ ((7 p2q − p2q3 − 8 q3 − 8 p4q + 7 q5 + q)(cIp )2

− 2q5 + p2q3 + 2 q3

+ 3p4q − 3 p2q)(c(hp))2 + (5 q3 − 4 q5 − q − 5 p2q3 − p4q + 2 p2q)(cIp )2

− q3 + q5 + p2q3) ·
(

s(hp))−1)

[√
1 − p2 − q2

]−1
)

α2

−α

(

(((−2 qṗ − 2 q̇ p)(cIp )2 + 2 qṗ + 2 q̇ p)(chp )2

+ (q̇ p + qṗ)(cIp )2 − q̇ p − qṗ + (((−2 pṗ + 2 qq̇)(cIp )2 + 2 pṗ − 2 qq̇)(chp )3

+ ((2 pṗ − 2 qq̇)(cIp )2 − 2 pṗ + 2 qq̇)chp )(s(hp))−1)(s(Ip))−1

+
(

(−q̇ p2 − 2 q2q̇ + q̇ − qpṗ)cIp chp

+ (ṗ − 2 p2ṗ − pqq̇ − ṗ q2)cIp (chp )2 + (−ṗ + ṗ q2 + 2 p2ṗ + pqq̇)cIp

shp

)

[√
1 − p2 − q2

]−1
)

, (62)

µ̇2 =
(

((4 q3p − 4 qp3)(cIp )2 + 4 qp3 − 4 q3p)(chp )4

+ ((qp3 − 7 q3p + 2 qp)(cIp )2 − 3 qp3 + 5 q3p)(chp )2

+ (2 q3p − qp + qp3)(cIp )2 − q3p + (((6 p2q2 − p4 − q4)(cIp )2
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− 6p2q2 + p4 + q4)(c5
hp

+ ((3 q4 − q2 − 9 p2q2 + p2)(cIp )2

−p4 − 2 q4 + 9 p2q2)(chp )3 + ((−p2 + q2 − 2 q4 + p4 + 3 p2q2)(c(Ip))2

+ q4 − 3 p2q2)c(hp))(shp )−1)(s(Ip))−1 + ((−4 p2q3 + 6 p2q − 2 q3

+ 2q5 − 6 p4q)c(Ip)(chp )3 + (2 q3 + 4 p4q + 2 p2q3 − 4 p2q − 2 q5)cIp chp

+ ((−2 p5 − 6 pq2 + 6 pq4 + 4 p3q2 + 2 p3)cIp (chp )4

+ (2 p5 + 8 pq2 − 8 pq4 − 6 p3q2 − 2 p3)cIp (chp )2 + (2 pq4 − 2 pq2

+ 2 p3q2)cIp )(shp )−1) ·
[√

1 − p2 − q2

]−1
)

α2

−α((2 pṗ − 2 qq̇)(cIp )3 + (−2 pṗ + 2 qq̇)cIp )(c2
hp

+ (2 pṗ + 4 qq̇)(cIp )3 + (−2 pṗ − 4 qq̇)cIp + (((−2 qṗ − 2 q̇ p)(cIp )3

+ (2 qṗ + 2 q̇ p)cIp )(chp )3 + ((2 qṗ + 2 q̇ p)(c(Ip))3

+ (−2 qṗ − 2 q̇ p)cIp )c(hp))(shp )−1)(sIp )−1

+ ((2 ṗ q2 + 2 pqq̇ + 4 p2ṗ − 2 ṗ)(cIp )2 + ṗ − 2 p2ṗ − pqq̇ − ṗ q2)chp

+
(

((−2 qpṗ − 2 q̇ p2 − 4 q2q̇ + 2 q̇)(cIp )2 − q̇ + q̇ p2 + 2 q2q̇ + qpṗ)(c2
hp

+ (2 qpṗ − 2 q̇ + 2 q̇ p2 + 4 q2q̇)(cIp )2

− q̇ p2 − 2 q2q̇ + q̇ − qpṗ) · (s(hp))−1
[√

1 − p2 − q2

]−1
)

, (63)

and

µ̇3 =
(

(((4 q3p − 4 qp3)(cIp )2 + 4 qp3 − 4 q3p)(chp )4 + ((qp3 − 7 q3p + 2 qp)(c(Ip))2

− 3 qp3 + 5 q3p)(chp )2 + (2 q3p − qp + qp3)(cIp )2 − q3p

+ (((6 p2q2 − p4 − q4)(cIp )2 − 6 p2q2 + p4

+ q4)(c(hp))5 + ((3 q4 − q2 − 9 p2q2 + p2)(cIp )2 − p4 − 2 q4 + 9 p2q2)(chp )3

+ ((−p2 + q2 − 2 q4 + p4 + 3 p2q2)(c(Ip))2 + q4 − 3 p2q2)c(hp))(shp )−1)(s(Ip))−1

+((−4 p2q3 + 6 p2q − 2 q3 + 2 q5

− 6 p4q)c(Ip)(chp )3 + (2 q3 + 4 p4q + 2 p2q3 − 4 p2q − 2 q5)cIp chp

+ ((−2 p5 − 6 pq2 + 6 pq4 + 4 p3q2 + 2 p3)cIp (chp )4

+ (2 p5 + 8 pq2 − 8 pq4 − 6 p3q2 − 2 p3)cIp (chp )2

+(2 pq4−2 pq2+2 p3q2)cIp )(shp )−1)

√
1−p2−q2

−1)
α2−α

(

(((2 pṗ−2 qq̇)(cIp )3

+ (−2 pṗ + 2 qq̇)c(Ip))(c(hp))2 + (2 pṗ + 4 qq̇)(cIp )3 + (−2 pṗ − 4 qq̇)cIp

+ (((−2 qṗ − 2 q̇ p)(cIp )3 + (2 qṗ + 2 q̇ p)cIp )(chp )3 + ((2 qṗ + 2 q̇ p)(c(Ip))3
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+ (−2 qṗ − 2 q̇ p)cIp )c(hp))(shp )−1)(sIp )−1 + (((2 ṗ q2 + 2 pqq̇ + 4 p2ṗ

− 2ṗ)(cIp )2 + ṗ − 2p2ṗ−pqq̇

− ṗq2)chp +(((−2 qpṗ−2 q̇ p2−4 q2q̇+2 q̇)(c(Ip))2−q̇+q̇ p2+2 q2q̇

+ qpṗ)(chp )2+(2 qpṗ−2 q̇+2 q̇ p2+4 q2q̇)(cIp )2−q̇ p2

−2 q2q̇+q̇−qpṗ)(shp )−1) ·
[√

1 − p2 − q2

]−1
)

(64)

Appendix B: Niching genetic algorithms

The most commonly used Genetic Algorithm (GA) is the so-called “Simple GA” (Goldberg
1989). To perform an evolutionary search, the Simple GA uses the operators of crossover,
reproduction, and mutation. A crossover is used to create new solution strings (“children”
or “offspring”) from the existing strings (“parents”). Reproduction copies individual strings
according to the objective function values. Mutation is an occasional random alteration of
the value of a string position, used to promote diversity of solutions.

Although Simple GA’s are capable of detecting the global optimum, they suffer from
two main drawbacks. First, convergence to a local optimum is possible due to the effect of
premature convergence, where all individuals in a population become nearly identical before
the optima has been located. Second, convergence to a single optimum does not reveal
other optima, which may exhibit attractive features. To overcome these problems, modifi-
cations of Simple GA’s were considered. These modifications are called niching methods,
and are aimed at promoting a diversity of solutions for multi-modal optimisation problems.
In other words, instead of converging to a single (possibly local) optimum, niching allows
for a number of optimal solutions to co-exist, and it lets the designer choose the appropri-
ate one. The niching method used throughout this study is that of Deterministic Crowding.
According to this method, individuals are first randomly grouped into parent pairs. Each pair
generates two children by application of the standard genetic operators. Every child then
competes against one of his parents. The winner of the competition moves on to the next
generation. By using the notation Pi for a parent, Ci for a child, f (·) for a fitness, and d(·)
for a distance, a pseudo-code for the two possible parent-child tournaments can be written
as follows (Gurfil and Kasdin 2002a, b):

If [d(P1, C1) + d(P2, C2) = d(P1, C2) + d(P2, C1)]
If f (C1) ≥ f (P1) replace P1 with C1

If f (C2) ≥ f (P2) replace P2 with C2

Else
If f (C1) ≥ f (P2) replace P2 with C1

If f (C2) ≥ f (P1) replace P1 with C2

In addition to applying the Deterministic Crowding niching method, we used a two-point
crossover instead of a single-point one. In the Simple GA, the crossover operator breaks
the binary string of parameters, the “chromosome,” at a random point and exchanges the
two pieces to create a new “chromosome.” In a two-point crossover, the “chromosome” is
represented with a ring. The string between the two-crossover points is then exchanged. The
two-point crossover or other multiple-point crossover schemes have preferable properties
when optimisation highly nonlinear functions is performed.
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